नेपाल इञ्जिनियरिङ्ग सेवा, इलेक्ट्रिकल इञ्जिनियरिङ्ग समूह, जनरल इलेक्ट्रिकल इञ्जिनियरिङ्ग उपसमूह राजपत्राङ्कित तृतीय श्रेणी, इलेक्ट्रिकल इन्जिनियर पदको खुला प्रतियोगितात्मक परीक्षाको पाठ्यक्रम

# द्वितीय पत्र (Paper II): Technical Subject Section A -20 Marks

## 1. HYDRO POWER POLICY AND PLANING

- 1.1 History of power development in Nepal; hydro power potential; energy supply demand trends; challenges and prospects of hydropower development; role of government institutions; NEA and private sectors in power development; concept of deregulation and unbundling; Concept of independent regulatory commission; efforts towards power sector reform.
- 1.2 Salient features of various Nepalese power plants; current scenario of transmission and distribution networks and substations in Nepal.
- 1.3 Legal provisions:
  - 1.3.1 Electricity Act
  - 1.3.2 Electricity Regulation
  - 1.3.3 NEA Act
  - 1.3.4 Civil Service Act
  - 1.3.5 Civil Service Regulation
  - 1.3.6 Hydropower Development Policy

## 2. ECONOMICS OF POWER UTILIZATION

- 2.1 Economic considerations: Cost classification; interest and depreciation
- 2.2 Demand characteristics: load curves, load duration curve, demand factor; load factor, diversity factor, causes of low power factor and its disadvantages, power factor improvement and its economics
- 2.3 Tariff: objective, factors affecting tariff, types of tariff
- 2.4 Illumination: Illumination and luminance, radiant efficiency, plane and solid angles, laws of illumination; polar curves, illumination requirement, design of indoor and out-door lighting scheme. Incandescent lamps, arc lamps, sodium discharge lamps, mercury fluorescent lamps, high pressure mercury vapor lamps.

#### Section B-20 Marks

## 3. NETWORK ANALYSIS

- 3.1 Ohms law, Kirchoff's law, nodal and mesh analysis
- 3.2 Series and parallel circuit, delta-star and star-delta transformation
- 3.3 Concept of complex Impedance and Admittance RLC series and parallel circuit
- 3.4 Network Theorem: Thevenins theorem, Nortons theorem, Superposition theorem, Reciprocity theorem and Maximum power transfer theorem.
- 3.5 Resonance in series and parallel RLC circuit
- 3.6 Active, Reactive and Apparent power
- 3.7 Transient response of RLC circuit excited by DC and AC sources
- 3.8 Fourier analysis
- 3.9 Two-port network: Z, Y, T and h parameters, T to  $\Pi$  and  $\Pi$  to T transformation, two-port network connection
- 3.10 Three-phase circuit analysis, phase and line quantities

नेपाल इञ्जिनियरिङ्ग सेवा, इलेक्ट्रिकल इञ्जिनियरिङ्ग समूह, जनरल इलेक्ट्रिकल इञ्जिनियरिङ्ग उपसमूह राजपत्राङ्कित तृतीय श्रेणी, इलेक्ट्रिकल इन्जिनियर पदको खुला प्रतियोगितात्मक परीक्षाको पाठ्यक्रम

## 4. CONTROL SYSTEM

- 4.1 Mathematical modeling: differential equation representation, transfer function notations and state space representations of physical systems, Block diagram algebra, signal flow graphs.
- 4.2 Transient and steady state response: impulse response, step and ramp response analysis of a 1st and 2nd order systems, overshoot and damping, steady state error and error constants
- 4.3 Effect of feedback on stability and steady state error
- 4.4 Stability: Relative and absolute stability, Routh -Herwitz criterion.
- 4.5 Root locus: Manual plotting and judging the relative stability using root locus technique.
- 4.6 Frequency response: Polar, and Bode plots, stability in frequency domain, gain margin and phase margins, Nyquist criterion for stability.
- 4.7 Root locus: Manual plotting and judging the relative stability using root locus technique.
- 4.8 Control system design: lead-lag and PID controllers and setting the controller parameters using Root locus and Bode plots.

# **Section C-30 Marks**

# 5. STATIC AND DYNAMIC ELECTRICAL MACHINES

- 5.1 Transformer: Working principle, Equivalent Circuit, Losses and efficiency, Voltage regulation, Transformer tests, Auto transformer, Three phase transformer connections, Parallel operation
- 5.2 D.C. Machine: Constructional detail, Operation in motoring and generating mode, Back emf in DC motor, Types of DC motor, their characteristics and applications, DC motor starter, Speed control of DC motor
- 5.3 Induction machine: Equivalent circuit, Torque-speed characteristic, Losses and efficiency, Staring methods, Speed control of three phase induction motor, Induction motor tests, Single phase induction motors- types, characteristics and applications
- 5.4 Synchronous machine: Salient pole and cylindrical rotor construction, generating and motoring principle, phasor diagram and power angle characteristics, Parallel operation of synchronous generators, Starting methods for synchronous motor, Effect of excitation, V and Inverted V curves, Synchronous condenser

#### 6. ELECTRICAL SUPPLY SYSTEMS

- 6.1 Power Plants: components of hydro power plant, Steam power Plants and Diesel Power Plants; Turbine classifications, governing systems, Plant use factor; load sharing between base load and peak load plants
- 6.2 Transmission system: Overhead and underground transmissions, EHV AC and HVDC Transmission.

# नेपाल इञ्जिनियरिङ्ग सेवा, इलेक्ट्रिकल इञ्जिनियरिङ्ग समूह, जनरल इलेक्ट्रिकल इञ्जिनियरिङ्ग उपसमूह राजपत्राङ्कित तृतीय श्रेणी, इलेक्ट्रिकल इन्जिनियर पदको खुला प्रतियोगितात्मक परीक्षाको पाठ्यक्रम

- 6.3 Electrical and Mechanical design of Over head AC transmission: Selections of conductor size and configuration, supports and cross arms, insulators, sag and tension calculation.
- 6.4 Power Distribution System: primary and secondary distribution, Distribution network layouts, protection coordination in distribution system.

#### 7. POWER SYSTEM ANALYSIS

- 7.1 Computation of transmission line parameters, GMD and GMR, proximity effect and skin effect.
- 7.2 Transmission line performance: Per unit system representation, Single line diagram, Lumped and distributed parameter modeling, ABCD parameters, efficiency & regulations calculations, Ferranti effect, surge impedance loading
- 7.3 Load flow: Basic Load flow equation, Gauss-Seidal and Newtan-Rapshon methods
- 7.4 Over voltages in transmission lines: Power frequency, switching and lightning over voltages, surge arrestors
- 7.5 VAR compensation: Real and reactive power flow through transmission line, series and shunt compensations
- 7.6 Fault calculations: Symmetrical and unsymmetrical faults
- 7.7 Power system stability studies: Steady state & transient stability limits, swing equations, equal area criterion, stability enhancement techniques.
- 7.8 Corona: corona inception voltage, power loss, waveform deformation, RI and AN due to corona

## Section D-30 Marks

### 8. MEASURMENTS AND INSTRUMENTATION

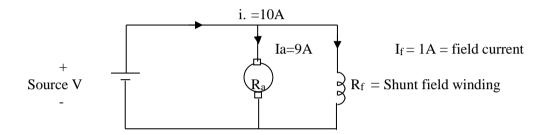
- 8.1 Accuracy, Precision, Absolute and Relative Errors, Parallax
- 8.2 Deflection type measuring instruments: Galvanometer, Ammeter, Voltmeter, Wattmeter, Watt-hour meter, Maximum Demand Meter, Frequency Meter
- 8.3 Instrument Transformers: Operating Principles of Measuring and Protection type CTs, Potential transformers
- 8.4 Transducers: Tachometer, potentiometer, Measurement of electrical, mechanical, thermal and hydraulic variables
- 8.5 Measurement of low medium and high resistances by Ohmmeter method, Meggers and DC bridges
- 8.6 Measurement of inductance, capacitance and frequency by AC bridge circuits
- 8.7 Operational Amplifier: Signal Amplification, attenuation, differentiation, integration and adder
- 8.8 Operating principles of Analog and Digital Oscilloscope
- 8.9 Analog to Digital and Digital to Analog converters
- 8.10 Digital instrumentation: Fundamental principles, interfacing to the computers, Microprocessor based instrumentation

नेपाल इञ्जिनियरिङ्ग सेवा, इलेक्ट्रिकल इञ्जिनियरिङ्ग समूह, जनरल इलेक्ट्रिकल इञ्जिनियरिङ्ग उपसमूह राजपत्राङ्कित तृतीय श्रेणी, इलेक्ट्रिकल इन्जिनियर पदको खुला प्रतियोगितात्मक परीक्षाको पाठ्यक्रम

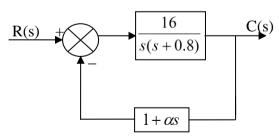
#### 9. POWER SYSTEM PROTECTION

- 9.1 Fuse, Magnetic Contactors, Isolators, MCB and MCCB: characteristics and operating principles
- 9.2 Relays: Electromagnetic and Static Relays, Over current Relay, Impedance Relay, Directional Relay
- 9.3 Circuit Breakers: ACB, OCB, ABCB, VCB and SF6 CB; construction, operating principles and applications
- 9.4 Protection schemes: Over current, under voltage, differential, distance protection
- 9.5 Grounding: System and equipment grounding, electric shock, safe value of current and voltages, touch and step potentials, Ground Fault Current Interrupters

#### 10. POWER ELECTRONICS


- 10.1 Devices: Power Transistor, Power Diodes, Thyristor, Triac, MOSFET, UJT, GTO Construction and their characteristics
- 10.2 Rectifier: Rectifier using diodes half wave, full wave, single phase, three phase, capacitor and inductor filters, Controlled rectifier using thyristors half wave, full wave, single phase, three phase.
- 10.3 DC chopper: Step down chopper, Step up chopper.
- 10.4 Inverter: Single phase voltage inverter, There phase voltage inverter, current source inverter.
- 10.5 Cyclo-converter Single phase and three phase.
- 10.6 AC voltage controller with resistive load and inductive load.

......


नेपाल इञ्जिनियरिङ्ग सेवा, इलेक्ट्रिकल इञ्जिनियरिङ्ग समूह, जनरल इलेक्ट्रिकल इञ्जिनियरिङ्ग उपसमूह राजपत्राङ्कित तृतीय श्रेणी, इलेक्टिकल इन्जिनियर पदको खला प्रतियोगितात्मक परीक्षाको पाठ्यक्रम

# विषयगत नमूना प्रश्नहरु (Sample Questions)

- 1. A three phase star connected system with line voltage of 400V connected to three loads:  $25\angle0^{\circ}$ ,  $11\angle-20^{\circ}$  and  $15\angle10^{\circ}\Omega$ . Find current through neutral and total power of the circuit.
- 2. The following figure shows the circuit diagram of a dc shunt motor running at 1500 rpm and drawing a current of 10 A from the source. If the field winding is disconnected, explain what will happen to the operation of the motor?



- 3. A 1100V/110V single phase transformer draws a current of 0.75 amp and consumes 300 watt at no-load. When a low voltage of 60 V is applied at primary with secondary terminals short circuited, primary draws a current of 16A and consumes 600 watts. Calculate the equivalent circuit parameters refer to primary side.
- 4. Consider the close loop control system as shown in figure bellow. Determine the value of  $\alpha$  such that the damping ratio is 0.5. Also determine the maximum overshoot in its step response.



5. Explain the operation of a single phase ac voltage controller with resistive load with a neat circuit diagram.

नेपाल इञ्जिनियरिङ्ग सेवा, इलेक्ट्रिकल इञ्जिनियरिङ्ग समूह, जनरल इलेक्ट्रिकल इञ्जिनियरिङ्ग उपसमूह राजपत्राङ्कित तृतीय श्रेणी, इलेक्ट्रिकल इन्जिनियर पदको खुला प्रतियोगितात्मक परीक्षाको पाठ्यक्रम

# प्रथम चरणको लिखित परीक्षाबाट छनौट भएका उम्मेदवारहरुलाई मात्र लिइने सामूहिक परीक्षण (Group Test) को लागि

# सामूहिक छलफल (Group Discussion)

यस प्रयोजनको लागि गरिने परीक्षण १० पूर्णाङ्क र ३० मिनेट अवधिको हुनेछ जुन नेताविहिन सामूहिक छलफल (Leaderless Group Discussion) को रुपमा अवलम्बन गरिने छ । दिइएको प्रश्न वा Topic का विषयमा पालैपालोसँग निर्दिष्ट समयभित्र समूहवीच छलफल गर्दै प्रत्येक उम्मेदवारले व्यक्तिगत प्रस्तुति (Individual Presentation) गर्नु पर्नेछ । यस परीक्षणमा मूल्याङ्गनको लागि देहाय अनुसारको ३ जनाको समिति रहनेछ ।

आयोगका अध्यक्ष वा सदस्य - अध्यक्षमनोविज्ञ - सदस्यदक्ष/विज्ञ (१ जना) - सदस्य

# सामूहिक छलफलमा दिइने नमुना प्रश्न वा Topic

उदाहरणको लागि - उर्जा संकट, गरीबी निवारण, स्वास्थ्य बीमा, खाद्य सुरक्षा, प्रतिभा पलायन जस्ता Topics मध्ये कुनै एक Topic मात्र दिइनेछ।